BIBLIOGRAPHY¶
- Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research, 117(C05030). https://doi.org/10.1029/2011JC007646 
- Chakrabarti, A., Brandt, S. R., Chen, Q., & Shi, F. (2017). Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands. Journal of Geophysical Research: Oceans, 122, 3861–3883. https://doi.org/10.1002/2016JC012093 
- Chawla, A., & Kirby, J. T. (2000). A source function method for generation of waves on currents in Boussinesq models. Applied Ocean Research, 22, 75–83. 
- Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2), 220–230. https://doi.org/10.1061/(ASCE)0733-9399(2006)1232:2(220) 
- Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B., & Haller, M. C. (1999). Boussinesq modeling of a rip current system. Journal of Geophysical Research, 104(C9), 20617–20637. 
- Chen, Q., Kaihatu, J. M., & Hwang, P. A. (2004). Incorporation of wind effects into Boussinesq wave models. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(6), 312–321. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:6(312) 
- Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., & Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup. II: 2D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), 48–56. 
- Chen, Q., Kirby, J. T., Dalrymple, R. A., Shi, F., & Thornton, E. B. (2003). Boussinesq modeling of longshore currents. Journal of Geophysical Research, 108(C11), 3362. https://doi.org/10.1029/2002JC001308 
- Chen, Q., Madsen, P. A., & Basco, D. R. (1999). Current effects on nonlinear interactions of shallow-water waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 125(4), 176–186. 
- Chen, Q., Madsen, P. A., Schäffer, H. A., & Basco, D. R. (1998). Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering, 33, 11–39. 
- Choi, J., Kirby, J. T., & Yoon, S. B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17–34. https://doi.org/10.1016/j.coastaleng.2015.04.005 
- Choi, Y.-K., Shi, F., Malej, M., and Smith, J. M., (2018). “Performance of various shock-capturing-type reconstruction schemes in the Boussinesq wave model, FUNWAVE-TVD”, Ocean Modelling, 131, 86-100. DOI:10.1016/j.ocemod.2018.09.004. 
- Choi, Y.-K., Seo S.-N., Choi J.-Y., Shi F., Park K.-S., (2019). “Wave prediction in a port using a fully nonlinear Boussinesq wave model”, Acta Oceanol. Sin., 38 (7), 1-12. DOI:10.1007/s13131-019-1456-2. 
- Choi, Y.-K., Fengyan Shi, Matt Malej, Jane M Smith, James T Kirby, and Stephan T Grilli. (2022). “Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing).” Geoscientific Model Development (Copernicus Publications) 15 (14): 5441-5459. doi:https://doi.org/10.5194/gmd-15-5441-2022. 
- Cruz, E. C., & Chen, Q. (2007). Numerical modeling of nonlinear water waves over heterogeneous porous beds. Ocean Engineering, 34(8–9), 1303–1321. https://doi.org/10.1016/j.oceaneng.2006.03.017 
- Cruz, E. C., & Chen, Q. (2006). Fundamental properties of Boussinesq-type equations for wave motion over a permeable bed. Coastal Engineering Journal, 48(3), 225–256. https://doi.org/10.1142/S0578563406001398 
- Day, S. J., Watts, P., Grilli, S. T., & Kirby, J. T. (2005). Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Marine Geology, 215, 59–92. https://doi.org/10.1016/j.margeo.2004.11.008 
- Dong, G., Wang, G., Ma, X., and Ma, Y., 2010, Numerical study of transient nonlinear harbor resonance, Science China Technological Sciences, 53, 2, 558-565. 
- El Safty, H. Marsooli, R. 2020, Ship wakes and their potential impacts on salt marshes in Jamaica Bay, New York. J. Mar. Sci. Eng. 2020, 8, 325. 
- Forlini, C., Qayyum, R., Malej, M., Lam, M.-A. Y.-H., Shi, F., Angelini, C., & Sheremet, A. (2021). On the problem of modeling the boat wake climate: The Florida Intracoastal Waterway. Journal of Geophysical Research: Oceans, 126, e2020JC016676. https://doi.org/10.1029/2020JC016676 
- Gao, J., X Ma, G Dong, G Wang, 2015, Improvements on the normal mode decomposition method used in harbor resonance, https://doi.org/10.1177/1475090214527269. 
- Gao, J., Ma, X, Dong, G, Wang, G, 2016, Numerical study of transient harbor resonance induced by solitary waves, Journal of Engineering for the Maritime Environment, https://doi.org/10.1177/1475090214557845 
- Gao, J, C Ji, Y Liu, O Gaidai, X Ma, Z Liu, 2016, Numerical study on transient harbor oscillations induced by solitary waves, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2016.06.033 
- Gao, J., C Ji, Y Liu, X Ma, O Gaidai, 2017, Influence of offshore topography on the amplification of infragravity oscillations within a harbor, Applied Ocean Research 
- Gao, J., C Ji, O Gaidai, Y Liu, X Ma, 2017, Numerical investigation of transient harbor oscillations induced by N-waves, Coastal Engineering, Volume 125, July 2017, Pages 119-131, https://doi.org/10.1016/j.coastaleng.2017.03.004 
- Gao, J., C Ji, X Ma, Y Liu, O Gaidai, 2017, Numerical investigation of infragravity wave amplifications during harbor oscillations influenced by variable offshore topography, Ocean Dynamics, Volume 67, Issue 9, pp 1151–1162, https://link.springer.com/article/10.1007/s10236-017-1081-0 
- Gao, J., X Zhou, L Zhou, J Zang, Q Chen, H Ding, 2018, Numerical study of harbor oscillations induced by water surface disturbances within harbors of constant depth, Ocean Dynamics, Volume 68, Issue 12, pp 1663–1681, https://link.springer.com/article/10.1007/s10236-018-1222-0 
- Gao, J., C Ji, Y Liu, X Ma, O Gaidai, 2018, Numerical study on transient harbor oscillations induced by successive solitary waves, Ocean Dynamics, Volume 68, Issue 2, pp 193–209, https://link.springer.com/article/10.1007/s10236-017-1121-9 
- Gao, J., X Zhou, J Zang, Q Chen, L Zhou, 2018, Influence of offshore fringing reefs on infragravity period oscillations within a harbor, Ocean Engineering. Volume 158, 286-298, https://doi.org/10.1016/j.oceaneng.2018.04.006 
- Gao, J., X Zhou, L Zhou, J Zang, H Chen, 2019, Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor, Ocean Engineering, Volume 172, 86-95, https://doi.org/10.1016/j.oceaneng.2018.11.048. 
- Geiman, J. D., & Kirby, J. T. (2013). Unforced oscillation of rip-current vortex cells. Journal of Physical Oceanography, 43, 477–497. https://doi.org/10.1175/JPO-D-11-0164.1 
- Gobbi, M. F., & Kirby, J. T. (1999). Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, 37, 57–96. 
- Gobbi, M. F., Kirby, J. T., & Wei, G. (2000). A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. Journal of Fluid Mechanics, 405, 181–210. 
- Goncharenko, Y.V., Farquharson, G., Shi, F., Raubenheimer, B., Elgar, S.,2015,``Estimation of Shallow-water Breaking Wave Height from Synthetic Aperture Radar”,Geosicence and Remote Sensing Letters , DOI: 10.1109/LGRS.2015.2445492 
- Gong,G., Wang, G., Ma, X., and Ma, Yuxiang, 2010, Harbor resonance induced by subaerial landslide-generated impact waves, Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2010.03.005. 
- Grilli, S. T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, P. (2007). Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami. Journal of Waterway, Port, Coastal and Ocean Engineering, 133(6), 414–428. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(414) 
- Grilli, S. T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J. T., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth Systems Science, 10, 2109–2125. https://doi.org/10.5194/nhess-10-2109-2010 
- Grilli, S. T., Harris, J. C., Tajalli Bakhsh, T., Masterlark, T. L., Kyriakopoulos, C., Kirby, J. T., & Shi, F. (2013). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics, 170, 1333–1359. https://doi.org/10.1007/s00024-012-0528-y 
- Grilli, S. T., O’Reilly, C., Harris, J. C., Tajalli Bakhsh, T., Tehranirad, B., Banihashemi, S., Kirby, J. T. & Shi, F. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Natural Hazards, 76, 705–746. https://doi.org/10.1007/s11069-014-1522-8 
- Grilli, S.T., Grosdidier, S., Guerin, C.-A., 2015, Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf, Pure and Applied Geophysics, 173, 12, 3895-3934, https://link.springer.com/article/10.1007/s00024-015-1193-8 
- Grilli, S. T., Grilli, A. R., David, E., & Coulet, C. (2016). Tsunami hazard assessment along the north shore of Hispaniola from far- and near-field Atlantic sources. Natural Hazards, 82, 777–810. https://doi.org/10.1007/s11069-016-2218-z 
- Grilli, S. T., Guérin, C.-A., Shelby, M., Grilli, A. R., Moran, P., Grosdidier, S., & Insua, T. L. (2017). Tsunami detection by High Frequency Radar beyond the continental shelf: II. Extension of algorithms and validation on realistic case studies. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-017-1619-6 
- Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., Kirby, J. T. & Shi, F. (2017). Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the U S East Coast. Natural Hazards, 86, 353–391. https://doi.org/10.1007/s11069-016-2692-3 
- Grilli, A., Westcott, G., Grilli, S., Spaulding, M., Shi, F., and Kirby, J.T.,2020, Assessing coastal risk from extreme storms with a phase resolving wave model: Case Study of Narragansett, RI, USA, submitted to Coastal Engineering, DOI: 10.1016/j.coastaleng.2020.103735. 
- Guérin C.-A., S.T. Grilli, P. Moran, A.R. Grilli, T.L. Insua 2018. Tsunami detection by High Frequency Radar in British Columbia: performance assessment of the Time-Correlation Algorithm for synthetic and real events. Ocean Dynamics, 68(4-5), 423-438, doi.org/10.1007/s10236-018-1139-7 
- Goncharenko, Y.V., Farquharson, G., Shi, F., Raubenheimer, B., Elgar, S.,2015,”Estimation of Shallow-water Breaking Wave Height from Synthetic Aperture Radar”,Geosicence and Remote Sensing Letters, doi:10.1109/LGRS.2015.2445492. 
- Ha, T., JY Choi, J Yoo, I Chun, J Shim, 2014, Transformation of small-scale meteorological tsunami due to terrain complexity on the western coast of Korea, Journal of Coastal Research, Special Issue No. 70, pp. 284–289, https://doi.org/10.2112/SI70-048.1 
- Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J. T., & Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, 112(C07024). https://doi.org/10.1029/2006JC003850 
- Kennedy, A. B., Dalrymple, R. A., Kirby, J. T., & Chen, Q. (2000). Determination of inverse depth using direct Boussinesq modeling. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(4), 206–214. 
- Kennedy, A. B., Kirby, J. T., Chen, Q., & Dalrymple, R. A. (2001). Boussinesq-type equations with improved nonlinear performance. Wave Motion, 33, 225–243. 
- Kennedy, A. B., Kirby, J. T., & Gobbi, M. F. (2002). Simplified higher-order Boussinesq equations. I. Linear simplifications. Coastal Engineering, 44, 205–229. 
- Kirby, J. T. (2017). Recent advances in nearshore wave, circulation and sediment transport modeling, The Sea, vol. 17. Chapter: Recent advances in nearshore wave, circulation and sediment transport modeling 
- Kirby, J. T. (2016). Boussinesq models and their application to coastal processes across a wide range of scales. Journal of Waterway, Port, Coastal and Ocean Engineering, (3116005). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000350 
- Kirby, J. T. (2003). Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents. In C. Lakhan (Ed.), Advances in Coastal Modeling (pp. 1–41). Elsevier. 
- Kirby, J. T., & Derakhti, M. (2017). Short-crested wave breaking. European Journal of Mechanics B/Fluids 
- Kirby, J. T., Shi, F., Nicolsky, D., & Misra, S. (2016). The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches. Landslides, 13, 1421–1434. https://doi.org/10.1007/s10346-016-0682-x 
- Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39–55. https://doi.org/10.1016/j.ocemod.2012.11.009 
- Kirby, J. T., G. Wei, Q. Chen, A.B. Kennedy, and R.A. Dalrymple. (1998). FUNWAVE 1.0: fully nonlinear Boussinesq wave model-Documentation and user’s manual. CACR-98-06, Newark, DE: University of Delaware Center for Applied Coastal Research. 
- Lam, M. Y.-H., M. Malej, F. Shi, and K. Ghosh. 2018. Profiling and Optimization of FUNWAVE-TVD on High Performance Computing (HPC) Machines. ERDC/CHL CHETN-I-95, Vicksburg, MS: U.S. Army Engineer Research and Development Center. 
- Li,L, AD Switzer, Y Wang, R Weiss, Q Qiu, CH Chan, P Tapponnier, 2015, What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophysical Research Letters 42 (20), 8498-8506, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL065567 
- Li, L., Shi, F., Ma, G., and Qui, Q., 2019, “Tsunamigenic potential of Baiyun submarine landslide in the South China Sea”, Journal of Geophysical Research: Solid Earth, DOI:10.1029/2019JB018062. 
- Liu, W, Y Ning, Y Zhang, J Zhang, 2018, Shock-capturing Boussinesq modelling of broken wave characteristics near a vertical seawall, Water, 10(12), 1876; https://doi.org/10.3390/w10121876 
- Liu, W., Liu, Y., and Zhao X., 2019, Numerical study of Bragg reflection of regular water waves over fringing reefs based on a Boussinesq model, Ocean Engineering, 190, https://doi.org/10.1016/j.oceaneng.2019.106415 
- Liu, W., Ning, Y., Shi, F., and Sun Z., 2020 “A 2DH fully dispersive Boussinesq-type model based on a finite-volume and finite-difference TVD-type scheme”, Ocean Modelling, 47, DOI: 10.1016/j.ocemod.2019.101559. 
- Long, W., Kirby, J. T., & Shao, Z. (2008). A numerical scheme for morphological bed level calculations. Coastal Engineering, 55, 167–180. https://doi.org/10.1016/j.coastaleng.2007.09.009 
- Lynett, P. J. et 37 alia. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modelling, 114, 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003 
- Malej, M, F Shi, J Smith, G Cuomo, and N P Tozer. 2021. “Boussinesq-Type Modeling of Low-Frequency Wave Motions at Marina di Carrara.” Journal of Waterway, Port, Coastal and Ocean Engineering 147 (6). 
- Misra, S. K., Kennedy, A. B., & Kirby, J. T. (2003). An approach to determining nearshore bathymetry using remotely sensed ocean surface dynamics. Coastal Engineering, 47, 265–293. 
- Nemati F., Grilli S.T., Ioualalen M., Boschetti L., Larroque L. and J. Trevisan 2018. High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system. Natural Hazards, pps. 1-34, doi.org/10.1007/s11069-018-3555-x 
- Ning, Y., Liu, W., Sun, Z., Zhao, X., and Zhang, Y. 2018, Parametric study of solitary wave propagation and runup over fringing reefs based on a Boussinesq wave model, Journal of Marine Science and Technology, https://link.springer.com/article/10.1007/s00773-018-0571-1 
- Oler, A., Zhang, N., Brandt, S. R., & Chen, Q. (2016). Implementation of an infinite-height levee in CaFunwave using an Immersed-Boundary Method. Journal of Fluids Engineering, Transactions of the ASME, 138(11), 111103. https://doi.org/10.1115/1.4033490 
- Orzech, M. D., Shi, F., Veeramony, J., Bateman, S., Calantoni, J., & Kirby, J. T. (2016). Incorporating floating surface objects into a fully dispersive surface wave model. Ocean Modelling, 102, 14–26. https://doi.org/10.1016/j.ocemod.2016.04.007 
- Paris, R. and Ulvrova, M., 2019, Tsunamis generated by subaqueous volcanic explosions in Taal Caldera Lake, Philippines, Bulletin of Volcanology, https://doi.org/10.1007/s00445-019-1272-2 
- Schambach, L., Grilli, S. T., Kirby, J. T., and Shi, F., 2018, “Landslide tsunami hazard along the upper US East Coast: effects of slide rheology, bottom friction and frequency dispersion”, Pure and Applied Geophysics, doi:10.1007/s00024-018-1978-7 
- Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi, M.R., and J. King 2018. Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline : Application to the southern Rhode Island coast. Coastal Engineering, 133, 26-42, doi.org/10.1016/j.coastaleng.2017.12.004 
- Schnyder, J. S. D., Eberli, G. P., Kirby, J. T., Shi, F., Tehranirad, B., Mulder, T., Wintersteller, P. (2016). Tsunamis caused by submarine slope failures along western Great Bahama Bank. Scientific Reports, 6(35925). https://doi.org/10.1038/srep35925 
- Shelby, M., Grilli, S. T., & Grilli, A. R. (2016). Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations. Pure and Applied Geophysics, 173, 3999–4037. https://doi.org/10.1007/s00024-016-1315-y 
- Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q., & Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42, 337–358. 
- Shi, F., Kirby, J. T., Dalrymple, R. A., & Chen, Q. (2003). Wave simulations in Ponce de Leon Inlet using Boussinesq model. Journal of Waterway, Port, Coastal and Ocean Engineering, 129(3), 124–135. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:3(124) 
- Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51. https://doi.org/10.1016/J.OCEMOD.2011.12.004 
- Shi, F., Malej, M., Smith, J. M., and Kirby, J. T., 2018, “Breaking of ship bores in a Boussinesq-type ship-wake model”, Coastal Engineering, doi:10.1016/j.coastaleng.2017.11.002. 
- Su, S.-F., Ma, G., & Hsu, T.-W. (2015). Boussinesq modeling of spatial variability of infragravity waves on fringing reefs. Ocean Engineering, 101, 78–92. https://doi.org/10.1016/j.oceaneng.2015.04.022 
- Su, F.-F. and Ma, G., 2018, Modeling two-dimensional infragravity motions on a fringing reef, Ocean Engineering, 153, DOI: 10.1016/j.oceaneng.2018.01.111 
- Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., … Mai, P. M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361. https://doi.org/10.1016/j.margeo.2014.09.043 
- Tappin, D. R., Watts, P., & Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth Systems Science, 8, 243–266. 
- Tehranirad, B, F Shi, J T Kirby, J C Harris, and S T Grilli. 2011. Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Report No. CACR-11-02, Newark, NJ: Center for Applied Coastal Research, University of Delaware. doi:10.1061/9780784480311.015. 
- Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., & Shi, F. (2015). Far-field tsunami impact in the North Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172, 3589–3616. https://doi.org/10.1007/s00024-015-1135-5 
- Torres, M. J., M. Y.-H. Lam, and M. Malej. 2022. Practical Guidance for Numerical Modeling in FUNWAVE-TVD. ERDC TN-22-1. Hanover, NH: U.S. Army Engineer Research and Development Center. DOI: https://hdl.handle.net/11681/45641. 
- Wang, G, G Dong, M Perlin, X Ma, Y Ma, 2011, An analytic investigation of oscillations within a harbor of constant slope, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2010.11.021 
- Wang, H, Zhu, S., Li, X., Zhang, W., Nie, Yu, 2018, Numerical simulations of rip currents off arc-shaped coastlines, Acta Oceanologica Sinica, 37, 3, 21-30, https://link.springer.com/article/10.1007/s13131-018-1197-1 
- Wang, G., JH Zheng, JPY Maa, JS Zhang, AF Tao, 2013, Numerical experiments on transverse oscillations induced by normal-incident waves in a rectangular harbor of constant slope, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2012.09.010 
- Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Systems Sciences, 3, 391–402. 
- Waythomas, C. F., Watts, P., Shi, F., & Kirby, J. T. (2009). Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska. Quaternary Science Reviews, 28, 1006–1019. https://doi.org/10.1016/j.quascirev.2009.02.019 
- Wei, G., & Kirby, J. T. (1995). Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 121, 251–261. 
- Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92. 
- Wei, G., Kirby, J. T., & Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 36, 271–299. 
- Yuan, Y., Shi, F., Kirby, J. T., and Yu, F., 2020, “Multiple-GPU acceleration of the Boussinesq-type wave model FUNWAVE-TVD”, Journal of Advances in Modeling Earth Systems, doi: 10.1029/2019MS001957