BIBLIOGRAPHY

  1. Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research, 117(C05030). https://doi.org/10.1029/2011JC007646
  2. Chakrabarti, A., Brandt, S. R., Chen, Q., & Shi, F. (2017). Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands. Journal of Geophysical Research: Oceans, 122, 3861–3883. https://doi.org/10.1002/2016JC012093
  3. Chawla, A., & Kirby, J. T. (2000). A source function method for generation of waves on currents in Boussinesq models. Applied Ocean Research, 22, 75–83.
  4. Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2), 220–230. https://doi.org/10.1061/(ASCE)0733-9399(2006)1232:2(220)
  5. Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B., & Haller, M. C. (1999). Boussinesq modeling of a rip current system. Journal of Geophysical Research, 104(C9), 20617–20637.
  6. Chen, Q., Kaihatu, J. M., & Hwang, P. A. (2004). Incorporation of wind effects into Boussinesq wave models. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(6), 312–321. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:6(312)
  7. Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., & Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup. II: 2D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), 48–56.
  8. Chen, Q., Kirby, J. T., Dalrymple, R. A., Shi, F., & Thornton, E. B. (2003). Boussinesq modeling of longshore currents. Journal of Geophysical Research, 108(C11), 3362. https://doi.org/10.1029/2002JC001308
  9. Chen, Q., Madsen, P. A., & Basco, D. R. (1999). Current effects on nonlinear interactions of shallow-water waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 125(4), 176–186.
  10. Chen, Q., Madsen, P. A., Schäffer, H. A., & Basco, D. R. (1998). Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering, 33, 11–39.
  11. Choi, J., Kirby, J. T., & Yoon, S. B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17–34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  12. Choi, Y.-K., Shi, F., Malej, M., and Smith, J. M., 2018, “Performance of various shock-capturing-type reconstruction schemes in the Boussinesq wave model, FUNWAVE-TVD”, Ocean Modelling, 131, 86-100. DOI:10.1016/j.ocemod.2018.09.004.
  13. Cruz, E. C., & Chen, Q. (2007). Numerical modeling of nonlinear water waves over heterogeneous porous beds. Ocean Engineering, 34(8–9), 1303–1321. https://doi.org/10.1016/j.oceaneng.2006.03.017
  14. Cruz, E. C., & Chen, Q. (2006). Fundamental properties of Boussinesq-type equations for wave motion over a permeable bed. Coastal Engineering Journal, 48(3), 225–256. https://doi.org/10.1142/S0578563406001398
  15. Day, S. J., Watts, P., Grilli, S. T., & Kirby, J. T. (2005). Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Marine Geology, 215, 59–92. https://doi.org/10.1016/j.margeo.2004.11.008
  16. Dong, G., Wang, G., Ma, X., and Ma, Y., 2010, Numerical study of transient nonlinear harbor resonance, Science China Technological Sciences, 53, 2, 558-565.
  17. Gao, J., X Ma, G Dong, G Wang, 2015, Improvements on the normal mode decomposition method used in harbor resonance, https://doi.org/10.1177/1475090214527269.
  18. Gao, J., Ma, X, Dong, G, Wang, G, 2016, Numerical study of transient harbor resonance induced by solitary waves, Journal of Engineering for the Maritime Environment, https://doi.org/10.1177/1475090214557845
  19. Gao, J, C Ji, Y Liu, O Gaidai, X Ma, Z Liu, 2016, Numerical study on transient harbor oscillations induced by solitary waves, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2016.06.033
  20. Gao, J., C Ji, Y Liu, X Ma, O Gaidai, 2017, Influence of offshore topography on the amplification of infragravity oscillations within a harbor, Applied Ocean Research
  21. Gao, J., C Ji, O Gaidai, Y Liu, X Ma, 2017, Numerical investigation of transient harbor oscillations induced by N-waves, Coastal Engineering, Volume 125, July 2017, Pages 119-131, https://doi.org/10.1016/j.coastaleng.2017.03.004
  22. Gao, J., C Ji, X Ma, Y Liu, O Gaidai, 2017, Numerical investigation of infragravity wave amplifications during harbor oscillations influenced by variable offshore topography, Ocean Dynamics, Volume 67, Issue 9, pp 1151–1162, https://link.springer.com/article/10.1007/s10236-017-1081-0
  23. Gao, J., X Zhou, L Zhou, J Zang, Q Chen, H Ding, 2018, Numerical study of harbor oscillations induced by water surface disturbances within harbors of constant depth, Ocean Dynamics, Volume 68, Issue 12, pp 1663–1681, https://link.springer.com/article/10.1007/s10236-018-1222-0
  24. Gao, J., C Ji, Y Liu, X Ma, O Gaidai, 2018, Numerical study on transient harbor oscillations induced by successive solitary waves, Ocean Dynamics, Volume 68, Issue 2, pp 193–209, https://link.springer.com/article/10.1007/s10236-017-1121-9
  25. Gao, J., X Zhou, J Zang, Q Chen, L Zhou, 2018, Influence of offshore fringing reefs on infragravity period oscillations within a harbor, Ocean Engineering. Volume 158, 286-298, https://doi.org/10.1016/j.oceaneng.2018.04.006
  26. Gao, J., X Zhou, L Zhou, J Zang, H Chen, 2019, Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor, Ocean Engineering, Volume 172, 86-95, https://doi.org/10.1016/j.oceaneng.2018.11.048.
  27. Geiman, J. D., & Kirby, J. T. (2013). Unforced oscillation of rip-current vortex cells. Journal of Physical Oceanography, 43, 477–497. https://doi.org/10.1175/JPO-D-11-0164.1
  28. Gobbi, M. F., & Kirby, J. T. (1999). Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, 37, 57–96.
  29. Gobbi, M. F., Kirby, J. T., & Wei, G. (2000). A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. Journal of Fluid Mechanics, 405, 181–210.
  30. Goncharenko, Y.V., Farquharson, G., Shi, F., Raubenheimer, B., Elgar, S.,2015,``Estimation of Shallow-water Breaking Wave Height from Synthetic Aperture Radar”,Geosicence and Remote Sensing Letters , DOI: 10.1109/LGRS.2015.2445492
  31. Gong,G., Wang, G., Ma, X., and Ma, Yuxiang, 2010, Harbor resonance induced by subaerial landslide-generated impact waves, Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2010.03.005.
  32. Grilli, S. T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, P. (2007). Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami. Journal of Waterway, Port, Coastal and Ocean Engineering, 133(6), 414–428. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(414)
  33. Grilli, S. T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J. T., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth Systems Science, 10, 2109–2125. https://doi.org/10.5194/nhess-10-2109-2010
  34. Grilli, S. T., Harris, J. C., Tajalli Bakhsh, T., Masterlark, T. L., Kyriakopoulos, C., Kirby, J. T., & Shi, F. (2013). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics, 170, 1333–1359. https://doi.org/10.1007/s00024-012-0528-y
  35. Grilli, S. T., O’Reilly, C., Harris, J. C., Tajalli Bakhsh, T., Tehranirad, B., Banihashemi, S., Kirby, J. T. & Shi, F. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Natural Hazards, 76, 705–746. https://doi.org/10.1007/s11069-014-1522-8
  36. Grilli, S.T., Grosdidier, S., Guerin, C.-A., 2015, Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf, Pure and Applied Geophysics, 173, 12, 3895-3934, https://link.springer.com/article/10.1007/s00024-015-1193-8
  37. Grilli, S. T., Grilli, A. R., David, E., & Coulet, C. (2016). Tsunami hazard assessment along the north shore of Hispaniola from far- and near-field Atlantic sources. Natural Hazards, 82, 777–810. https://doi.org/10.1007/s11069-016-2218-z
  38. Grilli, S. T., Guérin, C.-A., Shelby, M., Grilli, A. R., Moran, P., Grosdidier, S., & Insua, T. L. (2017). Tsunami detection by High Frequency Radar beyond the continental shelf: II. Extension of algorithms and validation on realistic case studies. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-017-1619-6
  39. Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., Kirby, J. T. & Shi, F. (2017). Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the U S East Coast. Natural Hazards, 86, 353–391. https://doi.org/10.1007/s11069-016-2692-3
  40. Guérin C.-A., S.T. Grilli, P. Moran, A.R. Grilli, T.L. Insua 2018. Tsunami detection by High Frequency Radar in British Columbia: performance assessment of the Time-Correlation Algorithm for synthetic and real events. Ocean Dynamics, 68(4-5), 423-438, doi.org/10.1007/s10236-018-1139-7
  41. Goncharenko, Y.V., Farquharson, G., Shi, F., Raubenheimer, B., Elgar, S.,2015,”Estimation of Shallow-water Breaking Wave Height from Synthetic Aperture Radar”,Geosicence and Remote Sensing Letters, doi:10.1109/LGRS.2015.2445492.
  42. Ha, T., JY Choi, J Yoo, I Chun, J Shim, 2014, Transformation of small-scale meteorological tsunami due to terrain complexity on the western coast of Korea, Journal of Coastal Research, Special Issue No. 70, pp. 284–289, https://doi.org/10.2112/SI70-048.1
  43. Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J. T., & Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, 112(C07024). https://doi.org/10.1029/2006JC003850
  44. Kennedy, A. B., Dalrymple, R. A., Kirby, J. T., & Chen, Q. (2000). Determination of inverse depth using direct Boussinesq modeling. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(4), 206–214.
  45. Kennedy, A. B., Kirby, J. T., Chen, Q., & Dalrymple, R. A. (2001). Boussinesq-type equations with improved nonlinear performance. Wave Motion, 33, 225–243.
  46. Kennedy, A. B., Kirby, J. T., & Gobbi, M. F. (2002). Simplified higher-order Boussinesq equations. I. Linear simplifications. Coastal Engineering, 44, 205–229.
  47. Kirby, J. T. (2016). Boussinesq models and their application to coastal processes across a wide range of scales. Journal of Waterway, Port, Coastal and Ocean Engineering, (3116005). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000350
  48. Kirby, J. T. (2003). Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents. In C. Lakhan (Ed.), Advances in Coastal Modeling (pp. 1–41). Elsevier.
  49. Kirby, J. T., & Derakhti, M. (2017). Short-crested wave breaking. European Journal of Mechanics B/Fluids
  50. Kirby, J. T., Shi, F., Nicolsky, D., & Misra, S. (2016). The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches. Landslides, 13, 1421–1434. https://doi.org/10.1007/s10346-016-0682-x
  51. Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39–55. https://doi.org/10.1016/j.ocemod.2012.11.009
  52. Kirby, J. T., 2017, Recent advances in nearshore wave, circulation and sediment transport modeling, The Sea, vol. 17. Chapter: Recent advances in nearshore wave, circulation and sediment transport modeling
  53. Li,L, AD Switzer, Y Wang, R Weiss, Q Qiu, CH Chan, P Tapponnier, 2015, What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophysical Research Letters 42 (20), 8498-8506, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL065567
  54. Liu, W, Y Ning, Y Zhang, J Zhang, 2018, Shock-capturing Boussinesq modelling of broken wave characteristics near a vertical seawall, Water, 10(12), 1876; https://doi.org/10.3390/w10121876
  55. Long, W., Kirby, J. T., & Shao, Z. (2008). A numerical scheme for morphological bed level calculations. Coastal Engineering, 55, 167–180. https://doi.org/10.1016/j.coastaleng.2007.09.009
  56. Lynett, P. J. et 37 alia. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modelling, 114, 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003
  57. Misra, S. K., Kennedy, A. B., & Kirby, J. T. (2003). An approach to determining nearshore bathymetry using remotely sensed ocean surface dynamics. Coastal Engineering, 47, 265–293.
  58. Nemati F., Grilli S.T., Ioualalen M., Boschetti L., Larroque L. and J. Trevisan 2018. High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system. Natural Hazards, pps. 1-34, doi.org/10.1007/s11069-018-3555-x
  59. Ning, Y., Liu, W., Sun, Z., Zhao, X., and Zhang, Y. 2018, Parametric study of solitary wave propagation and runup over fringing reefs based on a Boussinesq wave model, Journal of Marine Science and Technology, https://link.springer.com/article/10.1007/s00773-018-0571-1
  60. Oler, A., Zhang, N., Brandt, S. R., & Chen, Q. (2016). Implementation of an infinite-height levee in CaFunwave using an Immersed-Boundary Method. Journal of Fluids Engineering, Transactions of the ASME, 138(11), 111103. https://doi.org/10.1115/1.4033490
  61. Orzech, M. D., Shi, F., Veeramony, J., Bateman, S., Calantoni, J., & Kirby, J. T. (2016). Incorporating floating surface objects into a fully dispersive surface wave model. Ocean Modelling, 102, 14–26. https://doi.org/10.1016/j.ocemod.2016.04.007
  62. Schambach, L., Grilli, S. T., Kirby, J. T., and Shi, F., 2018, “Landslide tsunami hazard along the upper US East Coast: effects of slide rheology, bottom friction and frequency dispersion”, Pure and Applied Geophysics, doi:10.1007/s00024-018-1978-7
  63. Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi, M.R., and J. King 2018. Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline : Application to the southern Rhode Island coast. Coastal Engineering, 133, 26-42, doi.org/10.1016/j.coastaleng.2017.12.004
  64. Schnyder, J. S. D., Eberli, G. P., Kirby, J. T., Shi, F., Tehranirad, B., Mulder, T., Wintersteller, P. (2016). Tsunamis caused by submarine slope failures along western Great Bahama Bank. Scientific Reports, 6(35925). https://doi.org/10.1038/srep35925
  65. Shelby, M., Grilli, S. T., & Grilli, A. R. (2016). Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations. Pure and Applied Geophysics, 173, 3999–4037. https://doi.org/10.1007/s00024-016-1315-y
  66. Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q., & Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42, 337–358.
  67. Shi, F., Kirby, J. T., Dalrymple, R. A., & Chen, Q. (2003). Wave simulations in Ponce de Leon Inlet using Boussinesq model. Journal of Waterway, Port, Coastal and Ocean Engineering, 129(3), 124–135. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:3(124)
  68. Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51. https://doi.org/10.1016/J.OCEMOD.2011.12.004
  69. Shi, F., Malej, M., Smith, J. M., and Kirby, J. T., 2018, “Breaking of ship bores in a Boussinesq-type ship-wake model”, Coastal Engineering, doi:10.1016/j.coastaleng.2017.11.002.
  70. Su, S.-F., Ma, G., & Hsu, T.-W. (2015). Boussinesq modeling of spatial variability of infragravity waves on fringing reefs. Ocean Engineering, 101, 78–92. https://doi.org/10.1016/j.oceaneng.2015.04.022
  71. Su, F.-F. and Ma, G., 2018, Modeling two-dimensional infragravity motions on a fringing reef, Ocean Engineering, 153, DOI: 10.1016/j.oceaneng.2018.01.111
  72. Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., … Mai, P. M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361. https://doi.org/10.1016/j.margeo.2014.09.043
  73. Tappin, D. R., Watts, P., & Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth Systems Science, 8, 243–266.
  74. Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., & Shi, F. (2015). Far-field tsunami impact in the North Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172, 3589–3616. https://doi.org/10.1007/s00024-015-1135-5
  75. Wang, G, G Dong, M Perlin, X Ma, Y Ma, 2011, An analytic investigation of oscillations within a harbor of constant slope, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2010.11.021
  76. Wang, H, Zhu, S., Li, X., Zhang, W., Nie, Yu, 2018, Numerical simulations of rip currents off arc-shaped coastlines, Acta Oceanologica Sinica, 37, 3, 21-30, https://link.springer.com/article/10.1007/s13131-018-1197-1
  77. Wang, G., JH Zheng, JPY Maa, JS Zhang, AF Tao, 2013, Numerical experiments on transverse oscillations induced by normal-incident waves in a rectangular harbor of constant slope, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2012.09.010
  78. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Systems Sciences, 3, 391–402.
  79. Waythomas, C. F., Watts, P., Shi, F., & Kirby, J. T. (2009). Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska. Quaternary Science Reviews, 28, 1006–1019. https://doi.org/10.1016/j.quascirev.2009.02.019
  80. Wei, G., & Kirby, J. T. (1995). Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 121, 251–261.
  81. Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92.
  82. Wei, G., Kirby, J. T., & Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 36, 271–299.