BIBLIOGRAPHY

  1. Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research, 117(C05030). https://doi.org/10.1029/2011JC007646

  2. Chakrabarti, A., Brandt, S. R., Chen, Q., & Shi, F. (2017). Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands. Journal of Geophysical Research: Oceans, 122, 3861–3883. https://doi.org/10.1002/2016JC012093

  3. Chawla, A., & Kirby, J. T. (2000). A source function method for generation of waves on currents in Boussinesq models. Applied Ocean Research, 22, 75–83.

  4. Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2), 220–230. https://doi.org/10.1061/(ASCE)0733-9399(2006)1232:2(220)

  5. Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B., & Haller, M. C. (1999). Boussinesq modeling of a rip current system. Journal of Geophysical Research, 104(C9), 20617–20637.

  6. Chen, Q., Kaihatu, J. M., & Hwang, P. A. (2004). Incorporation of wind effects into Boussinesq wave models. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(6), 312–321. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:6(312)

  7. Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., & Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup. II: 2D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), 48–56.

  8. Chen, Q., Kirby, J. T., Dalrymple, R. A., Shi, F., & Thornton, E. B. (2003). Boussinesq modeling of longshore currents. Journal of Geophysical Research, 108(C11), 3362. https://doi.org/10.1029/2002JC001308

  9. Chen, Q., Madsen, P. A., & Basco, D. R. (1999). Current effects on nonlinear interactions of shallow-water waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 125(4), 176–186.

  10. Chen, Q., Madsen, P. A., Schäffer, H. A., & Basco, D. R. (1998). Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering, 33, 11–39.

  11. Choi, J., Kirby, J. T., & Yoon, S. B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17–34. https://doi.org/10.1016/j.coastaleng.2015.04.005

  12. Choi, Y.-K., Shi, F., Malej, M., and Smith, J. M., (2018). “Performance of various shock-capturing-type reconstruction schemes in the Boussinesq wave model, FUNWAVE-TVD”, Ocean Modelling, 131, 86-100. DOI:10.1016/j.ocemod.2018.09.004.

  13. Choi, Y.-K., Seo S.-N., Choi J.-Y., Shi F., Park K.-S., (2019). “Wave prediction in a port using a fully nonlinear Boussinesq wave model”, Acta Oceanol. Sin., 38 (7), 1-12. DOI:10.1007/s13131-019-1456-2.

  14. Choi, Y.-K., Fengyan Shi, Matt Malej, Jane M Smith, James T Kirby, and Stephan T Grilli. (2022). “Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing).” Geoscientific Model Development (Copernicus Publications) 15 (14): 5441-5459. doi:https://doi.org/10.5194/gmd-15-5441-2022.

  15. Cruz, E. C., & Chen, Q. (2007). Numerical modeling of nonlinear water waves over heterogeneous porous beds. Ocean Engineering, 34(8–9), 1303–1321. https://doi.org/10.1016/j.oceaneng.2006.03.017

  16. Cruz, E. C., & Chen, Q. (2006). Fundamental properties of Boussinesq-type equations for wave motion over a permeable bed. Coastal Engineering Journal, 48(3), 225–256. https://doi.org/10.1142/S0578563406001398

  17. Day, S. J., Watts, P., Grilli, S. T., & Kirby, J. T. (2005). Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Marine Geology, 215, 59–92. https://doi.org/10.1016/j.margeo.2004.11.008

  18. Dong, G., Wang, G., Ma, X., and Ma, Y., 2010, Numerical study of transient nonlinear harbor resonance, Science China Technological Sciences, 53, 2, 558-565.

  19. El Safty, H. Marsooli, R. 2020, Ship wakes and their potential impacts on salt marshes in Jamaica Bay, New York. J. Mar. Sci. Eng. 2020, 8, 325.

  20. Forlini, C., Qayyum, R., Malej, M., Lam, M.-A. Y.-H., Shi, F., Angelini, C., & Sheremet, A. (2021). On the problem of modeling the boat wake climate: The Florida Intracoastal Waterway. Journal of Geophysical Research: Oceans, 126, e2020JC016676. https://doi.org/10.1029/2020JC016676

  21. Gao, J., X Ma, G Dong, G Wang, 2015, Improvements on the normal mode decomposition method used in harbor resonance, https://doi.org/10.1177/1475090214527269.

  22. Gao, J., Ma, X, Dong, G, Wang, G, 2016, Numerical study of transient harbor resonance induced by solitary waves, Journal of Engineering for the Maritime Environment, https://doi.org/10.1177/1475090214557845

  23. Gao, J, C Ji, Y Liu, O Gaidai, X Ma, Z Liu, 2016, Numerical study on transient harbor oscillations induced by solitary waves, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2016.06.033

  24. Gao, J., C Ji, Y Liu, X Ma, O Gaidai, 2017, Influence of offshore topography on the amplification of infragravity oscillations within a harbor, Applied Ocean Research

  25. Gao, J., C Ji, O Gaidai, Y Liu, X Ma, 2017, Numerical investigation of transient harbor oscillations induced by N-waves, Coastal Engineering, Volume 125, July 2017, Pages 119-131, https://doi.org/10.1016/j.coastaleng.2017.03.004

  26. Gao, J., C Ji, X Ma, Y Liu, O Gaidai, 2017, Numerical investigation of infragravity wave amplifications during harbor oscillations influenced by variable offshore topography, Ocean Dynamics, Volume 67, Issue 9, pp 1151–1162, https://link.springer.com/article/10.1007/s10236-017-1081-0

  27. Gao, J., X Zhou, L Zhou, J Zang, Q Chen, H Ding, 2018, Numerical study of harbor oscillations induced by water surface disturbances within harbors of constant depth, Ocean Dynamics, Volume 68, Issue 12, pp 1663–1681, https://link.springer.com/article/10.1007/s10236-018-1222-0

  28. Gao, J., C Ji, Y Liu, X Ma, O Gaidai, 2018, Numerical study on transient harbor oscillations induced by successive solitary waves, Ocean Dynamics, Volume 68, Issue 2, pp 193–209, https://link.springer.com/article/10.1007/s10236-017-1121-9

  29. Gao, J., X Zhou, J Zang, Q Chen, L Zhou, 2018, Influence of offshore fringing reefs on infragravity period oscillations within a harbor, Ocean Engineering. Volume 158, 286-298, https://doi.org/10.1016/j.oceaneng.2018.04.006

  30. Gao, J., X Zhou, L Zhou, J Zang, H Chen, 2019, Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor, Ocean Engineering, Volume 172, 86-95, https://doi.org/10.1016/j.oceaneng.2018.11.048.

  31. Geiman, J. D., & Kirby, J. T. (2013). Unforced oscillation of rip-current vortex cells. Journal of Physical Oceanography, 43, 477–497. https://doi.org/10.1175/JPO-D-11-0164.1

  32. Gobbi, M. F., & Kirby, J. T. (1999). Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, 37, 57–96.

  33. Gobbi, M. F., Kirby, J. T., & Wei, G. (2000). A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. Journal of Fluid Mechanics, 405, 181–210.

  34. Goncharenko, Y.V., Farquharson, G., Shi, F., Raubenheimer, B., Elgar, S.,2015,``Estimation of Shallow-water Breaking Wave Height from Synthetic Aperture Radar”,Geosicence and Remote Sensing Letters , DOI: 10.1109/LGRS.2015.2445492

  35. Gong,G., Wang, G., Ma, X., and Ma, Yuxiang, 2010, Harbor resonance induced by subaerial landslide-generated impact waves, Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2010.03.005.

  36. Grilli, S. T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, P. (2007). Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami. Journal of Waterway, Port, Coastal and Ocean Engineering, 133(6), 414–428. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(414)

  37. Grilli, S. T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J. T., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth Systems Science, 10, 2109–2125. https://doi.org/10.5194/nhess-10-2109-2010

  38. Grilli, S. T., Harris, J. C., Tajalli Bakhsh, T., Masterlark, T. L., Kyriakopoulos, C., Kirby, J. T., & Shi, F. (2013). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics, 170, 1333–1359. https://doi.org/10.1007/s00024-012-0528-y

  39. Grilli, S. T., O’Reilly, C., Harris, J. C., Tajalli Bakhsh, T., Tehranirad, B., Banihashemi, S., Kirby, J. T. & Shi, F. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Natural Hazards, 76, 705–746. https://doi.org/10.1007/s11069-014-1522-8

  40. Grilli, S.T., Grosdidier, S., Guerin, C.-A., 2015, Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf, Pure and Applied Geophysics, 173, 12, 3895-3934, https://link.springer.com/article/10.1007/s00024-015-1193-8

  41. Grilli, S. T., Grilli, A. R., David, E., & Coulet, C. (2016). Tsunami hazard assessment along the north shore of Hispaniola from far- and near-field Atlantic sources. Natural Hazards, 82, 777–810. https://doi.org/10.1007/s11069-016-2218-z

  42. Grilli, S. T., Guérin, C.-A., Shelby, M., Grilli, A. R., Moran, P., Grosdidier, S., & Insua, T. L. (2017). Tsunami detection by High Frequency Radar beyond the continental shelf: II. Extension of algorithms and validation on realistic case studies. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-017-1619-6

  43. Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., Kirby, J. T. & Shi, F. (2017). Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the U S East Coast. Natural Hazards, 86, 353–391. https://doi.org/10.1007/s11069-016-2692-3

  44. Grilli, A., Westcott, G., Grilli, S., Spaulding, M., Shi, F., and Kirby, J.T.,2020, Assessing coastal risk from extreme storms with a phase resolving wave model: Case Study of Narragansett, RI, USA, submitted to Coastal Engineering, DOI: 10.1016/j.coastaleng.2020.103735.

  45. Guérin C.-A., S.T. Grilli, P. Moran, A.R. Grilli, T.L. Insua 2018. Tsunami detection by High Frequency Radar in British Columbia: performance assessment of the Time-Correlation Algorithm for synthetic and real events. Ocean Dynamics, 68(4-5), 423-438, doi.org/10.1007/s10236-018-1139-7

  46. Goncharenko, Y.V., Farquharson, G., Shi, F., Raubenheimer, B., Elgar, S.,2015,”Estimation of Shallow-water Breaking Wave Height from Synthetic Aperture Radar”,Geosicence and Remote Sensing Letters, doi:10.1109/LGRS.2015.2445492.

  47. Ha, T., JY Choi, J Yoo, I Chun, J Shim, 2014, Transformation of small-scale meteorological tsunami due to terrain complexity on the western coast of Korea, Journal of Coastal Research, Special Issue No. 70, pp. 284–289, https://doi.org/10.2112/SI70-048.1

  48. Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J. T., & Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, 112(C07024). https://doi.org/10.1029/2006JC003850

  49. Kennedy, A. B., Dalrymple, R. A., Kirby, J. T., & Chen, Q. (2000). Determination of inverse depth using direct Boussinesq modeling. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(4), 206–214.

  50. Kennedy, A. B., Kirby, J. T., Chen, Q., & Dalrymple, R. A. (2001). Boussinesq-type equations with improved nonlinear performance. Wave Motion, 33, 225–243.

  51. Kennedy, A. B., Kirby, J. T., & Gobbi, M. F. (2002). Simplified higher-order Boussinesq equations. I. Linear simplifications. Coastal Engineering, 44, 205–229.

  52. Kirby, J. T. (2017). Recent advances in nearshore wave, circulation and sediment transport modeling, The Sea, vol. 17. Chapter: Recent advances in nearshore wave, circulation and sediment transport modeling

  53. Kirby, J. T. (2016). Boussinesq models and their application to coastal processes across a wide range of scales. Journal of Waterway, Port, Coastal and Ocean Engineering, (3116005). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000350

  54. Kirby, J. T. (2003). Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents. In C. Lakhan (Ed.), Advances in Coastal Modeling (pp. 1–41). Elsevier.

  55. Kirby, J. T., & Derakhti, M. (2017). Short-crested wave breaking. European Journal of Mechanics B/Fluids

  56. Kirby, J. T., Shi, F., Nicolsky, D., & Misra, S. (2016). The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches. Landslides, 13, 1421–1434. https://doi.org/10.1007/s10346-016-0682-x

  57. Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39–55. https://doi.org/10.1016/j.ocemod.2012.11.009

  58. Kirby, J. T., G. Wei, Q. Chen, A.B. Kennedy, and R.A. Dalrymple. (1998). FUNWAVE 1.0: fully nonlinear Boussinesq wave model-Documentation and user’s manual. CACR-98-06, Newark, DE: University of Delaware Center for Applied Coastal Research.

  59. Lam, M. Y.-H., M. Malej, F. Shi, and K. Ghosh. 2018. Profiling and Optimization of FUNWAVE-TVD on High Performance Computing (HPC) Machines. ERDC/CHL CHETN-I-95, Vicksburg, MS: U.S. Army Engineer Research and Development Center.

  60. Li,L, AD Switzer, Y Wang, R Weiss, Q Qiu, CH Chan, P Tapponnier, 2015, What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophysical Research Letters 42 (20), 8498-8506, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL065567

  61. Li, L., Shi, F., Ma, G., and Qui, Q., 2019, “Tsunamigenic potential of Baiyun submarine landslide in the South China Sea”, Journal of Geophysical Research: Solid Earth, DOI:10.1029/2019JB018062.

  62. Liu, W, Y Ning, Y Zhang, J Zhang, 2018, Shock-capturing Boussinesq modelling of broken wave characteristics near a vertical seawall, Water, 10(12), 1876; https://doi.org/10.3390/w10121876

  63. Liu, W., Liu, Y., and Zhao X., 2019, Numerical study of Bragg reflection of regular water waves over fringing reefs based on a Boussinesq model, Ocean Engineering, 190, https://doi.org/10.1016/j.oceaneng.2019.106415

  64. Liu, W., Ning, Y., Shi, F., and Sun Z., 2020 “A 2DH fully dispersive Boussinesq-type model based on a finite-volume and finite-difference TVD-type scheme”, Ocean Modelling, 47, DOI: 10.1016/j.ocemod.2019.101559.

  65. Long, W., Kirby, J. T., & Shao, Z. (2008). A numerical scheme for morphological bed level calculations. Coastal Engineering, 55, 167–180. https://doi.org/10.1016/j.coastaleng.2007.09.009

  66. Lynett, P. J. et 37 alia. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modelling, 114, 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003

  67. Malej, M, F Shi, J Smith, G Cuomo, and N P Tozer. 2021. “Boussinesq-Type Modeling of Low-Frequency Wave Motions at Marina di Carrara.” Journal of Waterway, Port, Coastal and Ocean Engineering 147 (6).

  68. Misra, S. K., Kennedy, A. B., & Kirby, J. T. (2003). An approach to determining nearshore bathymetry using remotely sensed ocean surface dynamics. Coastal Engineering, 47, 265–293.

  69. Nemati F., Grilli S.T., Ioualalen M., Boschetti L., Larroque L. and J. Trevisan 2018. High-resolution coastal hazard assessment along the French Riviera from co-seismic tsunamis generated in the Ligurian fault system. Natural Hazards, pps. 1-34, doi.org/10.1007/s11069-018-3555-x

  70. Ning, Y., Liu, W., Sun, Z., Zhao, X., and Zhang, Y. 2018, Parametric study of solitary wave propagation and runup over fringing reefs based on a Boussinesq wave model, Journal of Marine Science and Technology, https://link.springer.com/article/10.1007/s00773-018-0571-1

  71. Oler, A., Zhang, N., Brandt, S. R., & Chen, Q. (2016). Implementation of an infinite-height levee in CaFunwave using an Immersed-Boundary Method. Journal of Fluids Engineering, Transactions of the ASME, 138(11), 111103. https://doi.org/10.1115/1.4033490

  72. Orzech, M. D., Shi, F., Veeramony, J., Bateman, S., Calantoni, J., & Kirby, J. T. (2016). Incorporating floating surface objects into a fully dispersive surface wave model. Ocean Modelling, 102, 14–26. https://doi.org/10.1016/j.ocemod.2016.04.007

  73. Paris, R. and Ulvrova, M., 2019, Tsunamis generated by subaqueous volcanic explosions in Taal Caldera Lake, Philippines, Bulletin of Volcanology, https://doi.org/10.1007/s00445-019-1272-2

  74. Schambach, L., Grilli, S. T., Kirby, J. T., and Shi, F., 2018, “Landslide tsunami hazard along the upper US East Coast: effects of slide rheology, bottom friction and frequency dispersion”, Pure and Applied Geophysics, doi:10.1007/s00024-018-1978-7

  75. Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi, M.R., and J. King 2018. Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline : Application to the southern Rhode Island coast. Coastal Engineering, 133, 26-42, doi.org/10.1016/j.coastaleng.2017.12.004

  76. Schnyder, J. S. D., Eberli, G. P., Kirby, J. T., Shi, F., Tehranirad, B., Mulder, T., Wintersteller, P. (2016). Tsunamis caused by submarine slope failures along western Great Bahama Bank. Scientific Reports, 6(35925). https://doi.org/10.1038/srep35925

  77. Shelby, M., Grilli, S. T., & Grilli, A. R. (2016). Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations. Pure and Applied Geophysics, 173, 3999–4037. https://doi.org/10.1007/s00024-016-1315-y

  78. Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q., & Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42, 337–358.

  79. Shi, F., Kirby, J. T., Dalrymple, R. A., & Chen, Q. (2003). Wave simulations in Ponce de Leon Inlet using Boussinesq model. Journal of Waterway, Port, Coastal and Ocean Engineering, 129(3), 124–135. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:3(124)

  80. Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51. https://doi.org/10.1016/J.OCEMOD.2011.12.004

  81. Shi, F., Malej, M., Smith, J. M., and Kirby, J. T., 2018, “Breaking of ship bores in a Boussinesq-type ship-wake model”, Coastal Engineering, doi:10.1016/j.coastaleng.2017.11.002.

  82. Su, S.-F., Ma, G., & Hsu, T.-W. (2015). Boussinesq modeling of spatial variability of infragravity waves on fringing reefs. Ocean Engineering, 101, 78–92. https://doi.org/10.1016/j.oceaneng.2015.04.022

  83. Su, F.-F. and Ma, G., 2018, Modeling two-dimensional infragravity motions on a fringing reef, Ocean Engineering, 153, DOI: 10.1016/j.oceaneng.2018.01.111

  84. Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., … Mai, P. M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361. https://doi.org/10.1016/j.margeo.2014.09.043

  85. Tappin, D. R., Watts, P., & Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth Systems Science, 8, 243–266.

  86. Tehranirad, B, F Shi, J T Kirby, J C Harris, and S T Grilli. 2011. Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Report No. CACR-11-02, Newark, NJ: Center for Applied Coastal Research, University of Delaware. doi:10.1061/9780784480311.015.

  87. Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., & Shi, F. (2015). Far-field tsunami impact in the North Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172, 3589–3616. https://doi.org/10.1007/s00024-015-1135-5

  88. Torres, M. J., M. Y.-H. Lam, and M. Malej. 2022. Practical Guidance for Numerical Modeling in FUNWAVE-TVD. ERDC TN-22-1. Hanover, NH: U.S. Army Engineer Research and Development Center. DOI: https://hdl.handle.net/11681/45641.

  89. Wang, G, G Dong, M Perlin, X Ma, Y Ma, 2011, An analytic investigation of oscillations within a harbor of constant slope, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2010.11.021

  90. Wang, H, Zhu, S., Li, X., Zhang, W., Nie, Yu, 2018, Numerical simulations of rip currents off arc-shaped coastlines, Acta Oceanologica Sinica, 37, 3, 21-30, https://link.springer.com/article/10.1007/s13131-018-1197-1

  91. Wang, G., JH Zheng, JPY Maa, JS Zhang, AF Tao, 2013, Numerical experiments on transverse oscillations induced by normal-incident waves in a rectangular harbor of constant slope, Ocean Engineering, https://doi.org/10.1016/j.oceaneng.2012.09.010

  92. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Systems Sciences, 3, 391–402.

  93. Waythomas, C. F., Watts, P., Shi, F., & Kirby, J. T. (2009). Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska. Quaternary Science Reviews, 28, 1006–1019. https://doi.org/10.1016/j.quascirev.2009.02.019

  94. Wei, G., & Kirby, J. T. (1995). Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 121, 251–261.

  95. Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92.

  96. Wei, G., Kirby, J. T., & Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 36, 271–299.

  97. Yuan, Y., Shi, F., Kirby, J. T., and Yu, F., 2020, “Multiple-GPU acceleration of the Boussinesq-type wave model FUNWAVE-TVD”, Journal of Advances in Modeling Earth Systems, doi: 10.1029/2019MS001957