BIBLIOGRAPHY

  • Casulli, V. and Cheng, R. T., 1992, Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Method Fluid, 15 (6), 629-648. https://doi.org/10.1002/fld.1650150602

  • Erduran, K. S., Ilic, S., and Kutija, V., 2005, Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations, Int. J. Numer. Meth. Fluid., 49, 1213-1232.

  • Gottlieb, S., Shu C.-W., and Tadmore, E., 2001, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (1), 89 - 112.

  • Haas, K. A., I. A. Svendsen, M. C. Haller, and Q. Zhao, 2003, Quasi-three-dimensional modeling of rip current systems, J. Geophys. Res., 108, C7, 3216, https://doi.org/10.1029/2002JC001355.

  • Kim D. H., Cho, Y. S., and Kim, H. J., 2008, Well-balanced scheme between flux and source terms for computation of shallow-water equations over irregular bathymetry, Journal of Engineering Mechanics, 134, 277-290.

  • Kim, D. H., Lynett, P. J. and Socolofsky, S. A., 2009, A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows, Ocean Modeling, 27, 198-214.

  • Kim, D. H., 2009, Turbulent flow and transport modeling by long waves and currents, Ph.D. dissertation, Texas A& M University.

  • Kirby, J. T., Wei, G., Chen, Q., Kennedy, A. B. and Dalrymple, R. A., 1998, FUNWAVE 1.0, Fully nonlinear Boussinesq wave model. Documentation and user’s manual. Report CACR-98-06, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware.

  • Kirby, J. T. and Dalrymple, R. A., 1992, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.4. Documentation and User’s Manual, Research Report No. CACR-92-04, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark.

  • Kirby, J. T., Shi, F., Harris, J. C., and Grilli, S. T., 2011, Sensitivity analysis of trans-oceanic tsunami propagation to dispersive and Coriolis effects, in preparation.

  • Lynett, P. J., Wu, T.-R. and Liu, P. L.-F., 2002, Modeling wave runup with depth-integrated equations, Coastal Engineering, 46, 89-107.

  • Naik, N. H., Naik, V. K., and Nicoules, M., 1993, Parallelization of a class of implicit finite difference schemes in computational fluid dynamics, International Journal of High Speed Computing, 5: 1-50.

  • Newberger, P. A. and Allen, J. S., 2007, Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation, J. Geophy. Res., 112, C08018, https://doi.org/10.1029/2006JC003472

  • Ning, D. Z., Zang, J., Liang, Q., Taylor, P. H., and Borthwick, A. G. L., 2008, Boussinesq cut-cell model for non-linear wave interaction with coastal structures, International Journal for Numerical Methods in Fluids, 57 (10), 1459-1483.

  • Putrevu, U. and I. A. Svendsen, 1999, Three-dimensional dispersion of momentum in wave-induced nearshore currents, Eur. J. Mech. B/Fluids, 83-101.

  • Roeber, V., Cheung, K. F., and Kobayashi, M. H., 2010, Shock-capturing Boussinesq-type model for nearshore wave processes, Coastal Engineering, 57, 407-423.

  • Rogers, B. D., Borthwick, A. G. L., and Taylor, P. H., 2003, Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver, Journal of Computational Physics, 192, 422-451.

  • Shi, F., Kirby, J. T., Newberger, P. and Haas, K., 2005, NearCoM master program for nearshore community model, Version 2005.4 - Documentation and user’s manual, Research Report No. CACR-05-10, Center for Applied Coastal Research, Dept. of Civil and Environmental Engineering, Univ. of Delaware, Newark.

  • Shi, F., Kirby, J. T., Tehranirad, B. and Harris, J. C., 2011a, FUNWAVE-TVD, users’ manual and benchmark tests, Center for Applied Coastal Research Report, CACR 2011-04, University of Delaware, Newark, Delaware.

  • Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., and Grilli, S. T., 2011b, A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation”, Ocean Modelling, https://doi.org/10.1016/j.ocemod.2011.12.004.

  • Shi, F., Sun, W. and Wei, G., 1998, A WDM method on generalized curvilinear grid for calculation of storm surge flooding, Applied Ocean Research, 19(4), 275-282.

  • Shi, F. and Sun, W., 1995, A variable boundary model of storm surge flooding in generalized curvilinear grids, International Journal for Numerical Methods in Fluids, 21 (8), 642-651.

  • Shi,F.,Svendsen,I.A., Kirby, J.T., and Smith, J. M., 2003, A curvilinear version of a Quasi-3D nearshore circulation model, Coastal Engineering, 49 (1-2), 99-124

  • Shiach, J. B. and Mingham, C. G., 2009, A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations, Coastal Engineering, 56, 32-45.

  • Sitanggang, K. I. and Lynett, P., 2005, Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition, Int. J. Num. Meth. Fluids, 49, 57-74.

  • Smagorinsky, J., 1963, General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev, 91, 99-165.

  • Svendsen I. A., K. A. Haas, and Q. Zhao, 2004, Quasi-3D Nearshore Circulation Model SHORECIRC: Version 2.0, Research Report, Center for Applied Coastal Research, University of Delaware.

  • Tehranirad, B., Shi, F., Kirby, J. T., Harris, J. C. and Grilli, S., 2011, Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0, Research Report No. CACR-11-02, Center for Applied Coastal Research, University of Delaware.

  • Tonelli, M. and Petti, M., 2009, Hybrid finite volume - finite difference scheme for 2DH improved Boussinesq equations, Coastal Engineering, 56, 609-620.

  • Tonelli, M. and Petti, M., 2010, Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone, Ocean Engineering, 37, 567-582.

  • Toro, E. F., 2009, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Third edition, Springer, New York.

  • Yamamoto, S., Daiguji, H., 1993, Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations, Computers and Fluids, 22 (2/3), 259-270.

  • Yamamoto, S., Kano, S. and Daiguji, H, 1998, An efficient CFD approach for simulating unsteady hypersonic shock-shock interference flows, Computers and Fluids 27 (5-6), pp. 571-580.

  • Zhou, J. G., Causon, D. M., Mingham C. G., and Ingram, D. M., 2001, The surface gradient method for the treatment of source terms in the shallow-water equations, Journal of Computational Physics, 168, 1-25.